Tutorial on Spartan-3E Starter Board

programming with Xilinx ISE
Physics 116B

1 Introduction

The Spartan-3E Starter Board by Digilent features a programmable Spartan-3 FPGA (Field Pro-
grammable Gate Array) in addition to various inputs and outputs that allow us to interact with
the FPGA. These inputes include slide switches, push-button switches, rotary push-button switch,
LEDs, and a character LCD screen. In this tutorial, we will learn how to program the FPGA with
the Xilinx ISE Project Navigator. The code used to program our Spartan-3 FPGA is written in
VHDL (Very High Speed Integrated Circuit Hardare Description Language). Soon, we will see
what a simple VHDL design looks like. In the meantime, keep in mind that a typical design written
in VHDL is not similar to a program written in C+-+. Rather, VHDL is used to describe physical
hardware, like logic gates, flip-flops, and clocks that interact concurrently in a circuit rather than
sequentially. This distinction will become important as you learn how to correctly design your own
system architecture. Let us begin the tutorial by opening up the ISE Project Navigator.

File Edit View Project Source Process Tools Window Lajout Help |

IR R G P Y Y s EEE I I T4

Start wO8x

Welcome to the ISE® Design Suite
Project commands

Recent projects.
Double dick on a project in the list below to open

schematictest

Console +08x

[r

«
Console m Errors | 1) Wamings | [g6 Find n Fles Resuits

1.1 Opening a project in the Xilinx Project Navigator

Let’s start by opening a very simple project in the Xilinx Project Navigator called “LED _on.xise”.
From the file menu open the project (you can download it from the SmartSite Resources center)
and verify that it loads correctly. Double click on the highlighted line “LED_on - Behavioral
(LED_on.vhd)” in the “Hierarchy” pane shown below.

File Edit View Project Source Process Tools
D,;?LJI"'}“|.|0:> I X |[w o »

Design ~+0F X| "
E View: @ Il':a}lmplemeniaﬁon (@] Simulaﬁon b

5| | Hierarchy =

| - € LEp_on

o | B EE xc3s500e-4it256

BB & [l LED_on - Behavioral (LED_on.vhd)

@ @ constraints.ucf

[«

—

@@ |&F & F »|I5

»

The greyed out window should now fill itself with the “LED _on.vhd”

P2 Mo Processes Running

code

matched up with the one shown below.

. Verify that your window

|Desiqn + 05 X 4= 1
i View: @) {i\“l}lmplememaﬁon (@] S\mu\ation = 2
— 3
ﬁg Hierarchy 5
[fZ| - & LeD_on = 5
= | B €3 xc3s500e-4it256 &
2% & [uldh LED_on - Behavioral (LED_onvha) | ;
@ E constraints.ucf — q
A 10
B oy 11
u] 12
—_ % 13
- % | 1a
e 15
@ 1.
©
P | P2 No Processes Running

library

entity LED on is
Port (LED :
end LED on;

out STD_LOGIC):

architecture Behavioral of LED on is
begin
LED <= "1";

end Behavioral:

Let’s take a look at the code, shown below, and try to understand what each line is doing here.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity LED_on is
Port (LED : out STD_LOGIC);
end LED_on;

architecture Behavioral of LED_on is
begin

LED <= ’17;

end Behavioral;

The first line is specifying that we use the IEEE (Institute of Electrical and Electronics Engineers)
library package. This declaration should not need to change for your codework in this class. The
second line is a use statements specifying which specific package from the IEEE library we are using.
For example, the std_logic_1164 package includes the signal type std_logic, which we use in our
code. A signal type can be thought of as a data type in other languages you are familiar with.

Next, comes the entity declaration. An entity can be any “black-box” with inputs and outputs.
Your inputs and outputs are declared within the “Port()” statement. For our program, we have no
inputs and only one ouput: LED, a single bit standard logic type. For multiple signals, you simply
separate them with a comma in between.

After the entity declaration, we have the architecture of our entity. Inside the architecture declara-
tion, we describe how our entity (or black box) actually functions. Here, the LED signal is simply
assigned a value of “1”, corresponding to a logical high value.

At this point, you should have good idea of what is going on in this code. If anything is confusing,
call over you lab instructor and ask some questions. If you're ready to move on, turn the page and
follow along with the tutorial.

1.2 Flashing the FPGA

We will now generate a programming file with our VHDL code and flash the FPGA chip with it.
Go ahead and right click on “Generate Programming File” in the lower left pane of the ISE Project

Navigator and click “Run”.

P2 Mo Processes Running

Processes:LED_on - Behavioral

z Design Summary/Reports
©- % Design Utilities
8 ﬁ' User Constraints

- P2 synthesize - XST

i

H| 88|25 8| v

: @ Configure Targ
“o@% Analyze Design ReRun
RerunAll

E’t Stop
ViewText Report

Force Process Up-to-Date

W@ ImplementTop Module
Design Goals & Strategies...

IRl

& Start | B3 Design @1% Process Properties...

Errors

After some time, the program should have compiled successfully, leaving you with the following

screen.

P2 No Processes Running

Processes:LED_on - Behavioral
= Design Summary/Reports
8 Design Utilities
g 'ﬁ' User Constraints
B synthesize - X5T
g c}@ Implement Design
1 c)@ Generate Programming File
t @ Configure Target Device
g Analyze Design Using ChipScope

HI[FERE| v

[
|

& Start | B8 Desin | Files | [} Ubraries

Errors

Then, right click on “Configure Target Device”, click “Run”, and press OK.

We should now have an ISE iMPACT window open. Make sure your Spartan-3 Starter Board is
powered and has the USB-JTAG cable connected correctly (match the markings on the board with
the markings on the cable). From the file menu, open new project. Press “Yes” and then “OK”.

Fle Bt View Opersiors Oupt_Debwg_ Winiow ey
Dafis [molirw

s ~o o [Gve e I

‘28 Boundary Scan
- [2) systemace Please select an action from the list below

[Z) Create PROM File (PROM File Formatt..

@ Configure devices using Boundary-Scan (JTAG)
@-[2) wernik Dara

| Automaticaly connect to s cable and identify Boundary-Scan chain [

(©) Prepare a PROM File
() Prepare a System ACE File
(© Prepare aBoundary-Scan File

IMPACT Processes 08

When you are then prompted for assigning a configuration file, press “Yes”.

[rie it View Operations Output Debug Window Help [I=[=
PECIHEE P
IMPACT Flows ~08x
‘2a) Boundary Scan.
- [2] systemace
[5] Create PROM File (PROM File Formatt
& [2] webTik Data

Right click devies to select operations

—
——— O x 1% Auto Assign Configuration Files Query Dizlog
Available Operations are: @ Do you want to continue and assign configuration files(s)?
Don't show in, save the setting in p
B Boundary Scan [
Cansale “gax

For the first assigment window, select “LED _on.bit” and press “Open. For the second assignment
window, press “Bypass”. Then press “OK” in the Programming Properties window.

You should now see two Xilinx chips connected together with “LED_on.bit” under the xc3s500e

chip and “bypass” under the xcf02s chip. Go ahead and right click the xc3s500e chip and select
“Program”.

% File Edic View Operations Output Debug Window Help [=I=]=]
DPE[¥XeExsxnL 2ol
MPACT Flons w08 x
22 Boundary San
- [2) systemace .
[2) create PROM File (PROM File Formatt.. || p; _.
—— ——
& vemnon o]
Program
xci GetDevice ID
f .
0 Get Device Signature/LUsercode
One Step SVF
One Step XSVF
Assign New Configuration File..
Set Programming Properties...
Set Erase Properties...
MPACT Processes w08 x
Launch File Assignment Wizard
Available Operations are:
SetTarget Device
= Program
= Get Device ID
= Get Device Signature/Usercode
=P Read Device Status
=P One Step SVF
= One Step X5VF
B Boundary Scan
Console ~08x
§)INFO:iMPACT:501 - '1': Added Device %c3s200 successfully. =
=1
« i v
corsole | @ Errors | 1) warnings
Configuration |JTAG-USB Cable | 1600000 | |

The ISE iMPACT will execute your command and your board should come to life! Verify that the
LED under “F12” is illuminated.

2 Assigment

Your task now is to complete the following:

e Modify your VHDL code so that the output of the LED corresponds to the logical AND,
OR, NAND, NOR, XOR, and XNOR of slide switches 1 and 2. You will need to modify the
constraints.ucf file by adding the locations of slide switches 1 and 2. Verify that the output
gives you the correct results by comparing with a truth table for each logic statement.

e Now, modify your code to create a multiplexer than uses slide switch 0 to control the output
from slide switches 1 and 2. That is, when slide switch 0 is in the “off” position, the LED
should output the logical value of slide switch 1. When slide switch 0 is in the “on” position,
the LED should output the logical value of slide switch 2.

